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INVESTIGATION OF THE INITIAL STAGE OF SEPARATION FLOW 

AROUND A CIRCULAR CYLINDER 

A. I. Zobnin UDC 532.5 + 533.6 

The model of potential flow of an ideal incompressible fluid is used extensively in 
theoreticallinvestigation of nonstationary separation flow around bodies (see [i, 2], for 
instance). However, within the framework of this model a number of important questions 
have not yet been solved. Among them is the construction of the asymptotics for the solution 
in the neighborhood of the initial time. This paper is devoted to an investigation of this 
question for plane separation flow around a circular cylinder that starts to move from a 
state of rest. 

Let us consider the plane fluid flow around a circular cylinder that occurs as it moves 
from a state of rest. We assume that the flow occurs with stream separation, which we model 
by one vortex wake converging with the cylinder outline. We consider the fluid ideal and 
incompressible, and the flow outside the cylinder and the vortex wake potential. 

Let us formulate the problem of determining the kinematic flow parameters in a small 
neighborhood of the initial time t = 0 for certain constraints on the cylinder motion and 
the vortex wake parameters. Let us introduce a rectangular 0,x,y, coordinate system at whose 
infinite point the fluid is at rest. Let a cylinder Lo of radius R move at a velocity--U(t) 
along the 0~xl axis ~see Fig. i). 

We shall assume that the curvature of the vortex wake contour L, is continuous in the 
direction from A to B, while the intensity of the vortex wake yI(T,, t) has a derivative 
with respect to T on L, that belongs to the class H* in the neighborhood of the end B, and 
to the class H on the remaining part [3] (T is the complex coordinate of a point of the 
contour L, in the complex plane z, = x, + iy~, and t is the time). We also assume that the 
fluid velocities are finite everywhere. Consequently, the vortex wake will converge with 
the streamlined contour along the tangent [4], and its intensity at the point B, will be 
zero. 

At a fixed time t in the complex plane z, a boundary value problem can be formulated 
for the complex velocity v(z, z t) analogously to how it is done in [5, 6], on the construc- 
tion of an analytic function v(z,, t) outside the contours Lo and L, which would satisfy the 
condition of nonpenetration on Lo, have a given jump on L,, disappear at infinity, be finite 
everywhere and satisfy the Thomson theorem on constancy of the circulation of velocity over 
a closed fluid contour. This problem is a Reimann-Hilbert problem and allows of a unique 
solution that can be written in the form 
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Fig. i 

where L2 is the contour obtained from L~ by an inversion wlth respect to the circle Lo, 
~(T2) ='~(TI)6TI/a~; ~ is the complex coordinates of the point 0. 

Therefore, at each time the velocity field is determined by giving the velocity U(t), 
the contour L~ of the vortex wake, and the distribution of the vortex intensity there 

By using the Cauchy-Lagrange integral and the condition of no pressure Jump on the 
contour L~, it can he obtained that the circulation r of the vortex wake measured from its 
end BI is conserved at points moving at the velocities vo = (v++ v-)/2. It hence follows 
that if the contour L~ is given in the parametric form Tt = TI(P, t), then its motion will 
be described by the equation [5, 6]. 

77' (r, t) = ~o ('~,(r, t), t). 
ot  

(2) 

Let us introduce the scalar function of time 

7,(t)= y~('~,, t)~ os , }  ' 

where the asterisk denotes quantities referring to the separation point, and sl is the arc 
coordinate of a point on the curve LI measured from A. The function 7,(t) satisfies the 
equation [4] 

d~, [ oo+ ~*. 
dt = ~'* I,"~-'~ ] ' ( 3 )  

n is the external normal to the streamlined contour Lo. 

It can be shown that under the assumptions of finiteness of the velocity field and con- 
tinuity of the curvature of the contour LI its asymptotics in the neighborhood of the flow 
separation point have the form [5, 7]. 

o2= ~ a~/~ - 2R - ~ ( 0  + o (a~"~), ( 4 )  

where ox, o2 are the abscissa and ordinate of a point on Lx in a rectangular Cartesian coor- 
dinate system with origin at the point A (see Fig. I). The axis ot is here directed along 
the tangent to Lo while the axis 02 is along the external normal, and l(t) is a certain co- 
efficient dependent on the time. 

Let us turn to the direct solution of the problem of seeking the asymptotic of the flow 
in the neighborhood of the initial time. The relationships (1)-(4) allow reduction of this 
problem to determination of the time dependence of the functions Y,(t), l(t), and Z(t) , the 
lengths of the wake projections on the axis at. 

Let us introduce the function V = U + v and the complex variable z = z~ -- zo. We 
let T~, T2 denote the complex coordinates of points on L~ and L2 in the plane z. 
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We obtain new relationships containing bhe desired quantities 7,, %, 5. We convert 
the expression (3) by calculating (~V+/~n) * therein in terms of the limit value ~V+/~z. 
In conformity with the behavior of an integral of Cauchy type near the end of the contour 
of integration [3] and the Leibnitz formula [8], we obtain from (i) 

. _ ,  N = ;  . ( 5 )  

The contour integrals in this expression are continuous functions of the variable z in the 
neighborhood of the point a. The remaining components, except the first, have a singularity 
at this point. Here 6o = 6/R. Substituting here 

W (a) = - - W  (a), V~ (a) = - -  7~ (a) - -  2? 1 (a) ( I / R  - -  ks )  ~ / R ,  

wearrive at the deduction that the coefficient of the singularity (6 -- z) -I is zero, while 
for in (6-- z) 

a2 

Because of the assumption about the finiteness of the velocity field in the whole flow 
plane, the condition 

k~ = fIR (6) 

must be satisfied, which will assure that the coefficient of in (u-- z) will be zero. Condition 
(6) denotes agreement of the vortex wake curvature with the curvature of the streamlined 
contour at the shedding point. 

Taking account of the relations (5) and (6), the equality (3) can be reduced after a 
number of manipulations to the form 

,,2 

( a 3 
(7) 

Let us obtain still another relationship by using (i) and (2). To do this we calculate 
the velocity Vo = (~r+ + V-)/2 at a certain point T~Lx by setting T ~ 6 [3]. We define 
Vo (a) as the limit of Vo(z) as T § a. The obtained limit can be converted to the form 

Vo (a) = U (i  - -  R~/a  ')  - -  71 (a)/2 --~ (2~i) L1 S (i/(xa - -  a) - -  t/('~. - -  a)) Vx ('~) dTx. 
L 1 

On the other hand V0(a)= V-(a)+y1(a)/2 , where V-(a) is the fluid particle velocity under the 
wake. Equating the right sides of these equalities, we arrive at the desired relationship 

V-  (a) Jr  Y1 (a) = U ( i  - -  R~/a  ~) - -  (2zti)-I S (il'(~l - -  a) - -  t/(~s - -  a ) ) d r .  (8)  
L 1 

Expressing zx, za in (7) and (8) in terms of a,, o2, and going over t o  scalars, we obtain 

? -i *. o~) t 2~  + R (~ + dr,  
- -  R0 '  + ? ,  = 2U sin 0 -~ "~-  ~ .. 

~ + ~ LI (9) 

2,z,u  o j r 2o,o, + (,,,, +,,;) % = - . 

L 1 

where 0 is the angular coordinate of the separation point measured counterclockwise from the 
Ox axis. 

Let us investigate the system of relations (9). We note that if the integral components 
in both equations are discarded, then the system of ordinary differential equations obtained 
in this manner for the functions 7,(t) and 0(t) has no solutions satisfying the condition 
y,(O) = O. This means that these components should play a substantial role as t § 0. More- 
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over ,  the i n t e g r a l  term in  the  second equa t ion  should be a q u a n t i t y  of  the same o rde r  in 
time and of  the  same s ign  as 7 ' , / 7 , .  I t  can be hence shown tha t  the  i n t e g r a l  term in the  
f i r s t  equa t ion  does not  exceed y ,  in o rder  of  magnitude and has o p p o s i t e  s ign .  S e t t i n g  the 
a c c e l e r a t i o n  of  the po in t  of  s e p a r a t i o n  equal  to zero a t  the  i n i t i a l  t ime and U(t)  - Uot a ,  
0 < a <~ 1, we conclude t ha t  RB' i s  small  compared wi th  2Usiu 0. This denotes  the  power- 
law form of the time dependence with exponent a of the principal part of y,(t): 

v, (0 = Vo t= + o(~), .o < = ~< i. (lO) 

It follows also from (9) that the wake configurations for which ~a ~ 0 for all points of the 
contour are not realized. The quantity 2UR-?, cos 0 is an infinitesimal as t § 0 as compared 
with y',; hence it can be neglected for subsequent calculations. 

According to the representation (i0), for small times the formulas 

"~o t~+~; (11) 

v(~1) = w(l - a~)~ (12) 

will hold to higher order accuracy, where tt is the time of shedding of a point of the 
vortex wake having the coordinate ot at the time t from the cylinder: 

Y1 = vl/(~+~, (2/(= + i)~/(=+x)), ~ = =i(= + i), ~ (aO = - drla~. (13) 

It should be noted that because of (12), the continuity of the curvature of the contour L,, 
t and its tangency to the contour Lo at the point A, the function Yx(T) on the contour Lx will 

belong to the class H* in the neighborhood of the end Bx and satisfy the Hglder condition on 
its remaining part. This means that (i0) does not contradict the assumptions under which 
the relations (9) were obtained. Moreover, (ii) taken for tl = t yields the time dependence 
of the wake length, which diminishes the number of desired functions and permits considera- 
tion of a certain function At(1) instead of A(t). 

Let us express ~2 in terms of oI by using the expansion (4), while retaining the two 
first terms, and let us substitute it into (9). We note that if only the first were taken 
instead of the two, then the system (9) would again not have a solution satisfying the con- 
dition 7,(0) = 0. For the left and right sides of the second of the relations obtained in 
this manner to be quantities of the same order, satisfaction of the following equality is 
necessary 

~,1(l) = ~o/-S/= + o(l-8/D. 

Taking this fact into account, as well as (Ii)-(13), it can be shown that the relation- 
ships (9) are representable in the form 

l 
i / ~ol-81~b~ !~ 

+ Lo~ Gz 

'l 2%ol-alSo~i~ 

(.l+z; ol) ~(~)~'+~176 
0 

The dependence of  the  i n t e g r a l s  on Z in t he se  r e l a t i o n s h i p s  can be e x t r a c t e d  in the  form of  
m u l t i p l i e r s  by us ing  (12) by in t e r chang ing  the  v a r i a b l e s  of  i n t e g r a t i o n .  Then d i s c a r d i n g  
the remainder terms, we finally obtain 

I 
(. Ol '2 

7. = 2U sin 0 -- %o.n-lyll ~ / ~ (l -- Ol)~ 
"o i , ;,ool 

I 

~ . (i--I/2 
�9 --1 ~ - - 1  I G (0 

(14) 

The system (14) sets up the connection between the parameters of the vortex wake and 
the velocity of the cylinder at the time t under consideration. For arbitrary positive Uo 
and 0 < u~<l this system permits the unique determination of the quantities 7o, ~o, and 
therefore, the desired functions y,, A, l, which determine the asymptotics of the initial 
stage of separation flow around a cylinder, because of (I), (4), (11)-(13). 
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In particular, the solution of (14) for motion with finite acceleration (a = i) is 
determined by the relationships 

" f a l ' l / i  ; O* l lgdu 
HS~ ~ 

( i )-, Vo = 2Uo sin 8 t -k k,  zU* - -  (t - -  ~j ) l t2d~ S S 
o l -+- ko~ 1 

By using the first, the constant %o can be found numericallv to any degree of accuracy. 
A computation showed that %o = 0.252. Hence, Yo = 1.94 Uosln e follows. 

Therefore, the desired functions will be in this,~case 

~ ,  (t) = ~ot, k (t) = 8 k o ~ ' / ~ t  - ' ,  l.(t) = ~otVd. (15) 

The a s y m p t o t i c s  o b t a i n e d  c a n  b e  u s e d  f o r  a q u a l i t a t i v e  a n a l y s i s  a n d  a n u m e r i c a l  compu-  
t a t i o n  of the intitial stage of the flow around a circular cylinder. For instance, the re- 
lationships (15) permit making the deduction that the center of gravity of the vorticlty 
of a vortex wake and its end B, in the neighborhood of the time t = 0 move along lines making 
angles of about 6 and 14 ~ respectively with the axis ~,. 

Theauthor is grateful to D. N. Gorelov for constant attention to the research and for 
valuable remarks. 
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